772 research outputs found

    Comprehension of spacecraft telemetry using hierarchical specifications of behavior ⋆

    Get PDF
    Abstract. A key challenge in operating remote spacecraft is that ground operators must rely on the limited visibility available through spacecraft telemetry in order to assess spacecraft health and operational status. We describe a tool for processing spacecraft telemetry that allows ground operators to impose structure on received telemetry in order to achieve a better comprehension of system state. A key element of our approach is the design of a domain-specific language that allows operators to express models of expected system behavior using partial specifications. The language allows behavior specifications with data fields, similar to other recent runtime verification systems. What is notable about our approach is the ability to develop hierarchical specifications of behavior. The language is implemented as an internal DSL in the Scala programming language that synthesizes rules from patterns of specification behavior. The rules are automatically applied to received telemetry and the inferred behaviors are available to ground operators using a visualization interface that makes it easier to understand and track spacecraft state. We describe initial results from applying our tool to telemetry received from the Curiosity rover currently roving the surface of Mars, where the visualizations are being used to trend subsystem behaviors, in order to identify potential problems before they happen. However, the technology is completely general and can be applied to any system that generates telemetry such as event logs.

    Boundaryless Organizations and Boundaryless Careers: A New Market for High-Skilled Temporary Work

    Get PDF
    A typology of four different groups of temporary workers (transitional, traditional, career, boundaryless) is derived from economic, strategic, and human resource theories. Based on a survey of 276 temporary workers, we find support for distinguishing between high-skilled boundaryless temporaries and the three other types using multinomial logistic analysis

    Introducing Undergraduates to Mathematics Information Resources

    Get PDF

    Potential Benefits on Impairment of Endothelial Function after a High-Fat Meal of 4 Weeks of Flavonoid Supplementation

    Get PDF
    Studies with foods high in flavonoids have demonstrated improvement in endothelial function. We investigated whether 4 weeks of flavonoid supplementation would prevent an adverse impact on endothelial function of a high-fat meal. Endothelial function was measured by reactive hyperemia peripheral arterial tonometry (RH-PAT). The RH-PAT index was measured both before and 3 h after a high-fat meal, in 23 healthy volunteers. Subjects were randomized in a double-blind, cross-over design to 4 weeks of daily supplementation with OPC-3, or a matching placebo. RH-PAT index before and after the high-fat meal was measured at the beginning and end of each 4-week treatment phase. The high-fat meal caused a decline in endothelial function at baseline in the placebo (-10.71%, P = .006) and flavonoid [-9.97% (P = .077)] groups, and there was no difference in decline between arms (P = .906). The high-fat meal produced a decline after 4 weeks of placebo [-12.37% (P = .005)], but no decline after 4 weeks of flavonoid supplement [-3.16% (P = .663)], and the difference between the two responses was highly significant (P < .0001). Within-group comparisons revealed no difference in endothelial function decline in the placebo arm between baseline and 4 weeks [-10.71% versus -12.37% (P = .758)]. In the flavonoid supplement arm, the difference in endothelial function decline between baseline and 4 weeks was -9.97% versus -3.16%, but did not reach statistical significance (P = .451). These results suggest that the flavonoid supplement used in this study mitigates the impairment of endothelial function caused by a high-fat meal. Whether certain subpopulations derive greater or lesser benefit remains unclear

    Runtime verification of parametric properties using SMEDL

    Get PDF
    Parametric properties are typical properties to be checked in runtime verification (RV). As a common technique for parametric monitoring, trace slicing divides an execution trace into a set of sub traces which are checked against non-parametric base properties. An efficient trace slicing algorithm is implemented in MOP. Another RV technique, QEA further allows for nested use of universal and existential quantification over parameters. In this paper, we present a methodology for parametric monitoring using the RV framework SMEDL. Trace slicing algorithm in MOP can be expressed by execution of a set of SMEDL monitors. Moreover, the semantics of nested quantifiers is encoded by a hierarchy of monitors for aggregating verdicts of sub traces. Through case studies, we demonstrate that SMEDL provides a natural way to monitor parametric properties with more potentials for flexible deployment and optimizations

    Compiling the language Balsa to delay insensitive hardware

    Full text link
    A silicon compiler, Balsa-c, has been developed for the automatic synthesis of asynchronous, delay-insensitive circuits from the language Balsa. Balsa is derived from CSP with similar language constructs and a single-bit granularity type system. Balsa compiles to intermediate handshake circuits by an extended form of the com-pilation function used in the Tangram system.The handshake circuitsare subsequently mapped to CMOS implementations of 4-phase bundled-data asynchronous circuits by a suite of parameterised component-generating scripts within the Cadence design framework
    corecore